Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Biomater ; 177: 50-61, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331132

RESUMEN

Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments. The PA nanofibers were able to create a mesh-like coating for a wide range of cell lineages with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The targeting abilities of this system were assessed in vitro using human primary regulatory T (hTreg) cells coated with PAs displaying a vascular cell adhesion protein 1 (VCAM-1) targeting motif. This approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies. STATEMENT OF SIGNIFICANCE: Cell therapies hold great promise in the treatment of diseases and tissue regeneration, but their clinical use has been limited by cell survival, targeting, and function. We report here a method to coat single cells with a biodegradable matrix of biomimetic nanofibers composed of peptide amphiphile (PA) molecules. The nanofibers were able to coat cells, such as human primary regulatory T cells, with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Biomimética , Matriz Extracelular , Péptidos/farmacología , Péptidos/química
2.
ACS Biomater Sci Eng ; 9(3): 1251-1260, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36808976

RESUMEN

The extracellular matrix is a dynamic framework bearing chemical and morphological cues that support many cellular functions, and artificial analogs with well-defined chemistry are of great interest for biomedical applications. Herein, we describe hierarchical, extracellular-matrix-mimetic microgels, termed "superbundles" (SBs) composed of peptide amphiphile (PA) supramolecular nanofiber networks created using flow-focusing microfluidic devices. We explore the effects of altered flow rate ratio and PA concentration on the ability to create SBs and develop design rules for producing SBs with both cationic and anionic PA nanofibers and gelators. We demonstrate the morphological similarities of SBs to decellularized extracellular matrices and showcase their ability to encapsulate and retain proteinaceous cargos with a wide variety of isoelectric points. Finally, we demonstrate that the novel SB morphology does not affect the well-established biocompatibility of PA gels.


Asunto(s)
Nanofibras , Nanofibras/química , Microfluídica , Biomimética , Péptidos/química , Matriz Extracelular
3.
Cell Stem Cell ; 30(2): 219-238.e14, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36638801

RESUMEN

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM). We report on the use of three artificial ECMs based on peptide amphiphile (PA) supramolecular nanofibers. All nanofibers display the laminin-derived IKVAV signal on their surface but differ in the nature of their non-bioactive domains. We find that nanofibers with greater intensity of internal supramolecular motion have enhanced bioactivity toward hiPSC-derived motor and cortical neurons. Proteomic, biochemical, and functional assays reveal that highly mobile PA scaffolds caused enhanced ß1-integrin pathway activation, reduced aggregation, increased arborization, and matured electrophysiological activity of neurons. Our work highlights the importance of designing biomimetic ECMs to study the development, function, and dysfunction of human neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanofibras , Humanos , Proteómica , Neuronas/metabolismo , Matriz Extracelular/metabolismo , Nanofibras/química
4.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33877843

RESUMEN

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Asunto(s)
Perileno , Hidrógeno , Polimerizacion , Polímeros , Electricidad Estática
5.
Adv Sci (Weinh) ; 8(8): 2004042, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898187

RESUMEN

Dynamic and reversible assembly of molecules is ubiquitous in the hierarchical superstructures of living systems and plays a key role in cellular functions. Recent work from the laboratory reported on the reversible formation of such superstructures in systems of peptide amphiphiles conjugated to oligonucleotides and electrostatically complimentary peptide sequences. Here, a supramolecular system is reported upon where exchange dynamics and host-guest interactions between ß-cyclodextrin and adamantane on peptide amphiphiles lead to superstructure formation. Superstructure formation with bundled nanoribbons generates a mechanically robust hydrogel with a highly porous architecture that can be 3D printed. Functionalization of the porous superstructured material with a biological signal results in a matrix with significant in vitro bioactivity toward neurons that could be used as a supramolecular model to design novel biomaterials.

6.
ACS Appl Mater Interfaces ; 10(48): 41046-41055, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30475573

RESUMEN

The combination of biomaterials with stem cells is a promising therapeutic strategy to repair traumatic injuries in the central nervous system, and human bone marrow mesenchymal stem cells (BMSCs) offer a clinically translatable option among other possible sources of stem cells. We report here on the use of a supramolecular bioactive material based on a peptide amphiphile (PA), displaying a laminin-mimetic IKVAV sequence to drive neural transdifferentiation of human BMSCs. The IKVAV-PA self-assembles into supramolecular nanofibers that induce neuroectodermal lineage commitment after 1 week, as evidenced by the upregulation of the neural progenitor gene nestin ( NES) and glial fibrillary acidic protein ( GFAP). After 2 weeks, the bioactive IKVAV-PA nanofibers induce significantly higher expression of neuronal markers ß-III tubulin (TUJ-1), microtubule-associated protein-2 (MAP-2), and neuronal nuclei (NEUN), as well as the extracellular matrix laminin (LMN). Furthermore, the human BMSCs exposed to the biomaterial reveal a polarized cytoskeletal architecture and a decrease in cellular size, resembling neuron-like cells. We conclude that the investigated supramolecular biomaterial opens the opportunity to transdifferentiate adult human BMSCs into neuronal lineage.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Laminina , Células Madre Mesenquimatosas/metabolismo , Nanofibras/química , Neuronas/metabolismo , Fragmentos de Péptidos , Células de la Médula Ósea , Humanos , Laminina/química , Laminina/farmacología , Células Madre Mesenquimatosas/citología , Neuronas/citología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología
7.
Nano Lett ; 18(10): 6237-6247, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30211565

RESUMEN

Brain-derived neurotrophic factor (BDNF), a neurotrophin that binds specifically to the tyrosine kinase B (TrkB) receptor, has been shown to promote neuronal differentiation, maturation, and synaptic plasticity in the central nervous system (CNS) during development or after injury and onset of disease. Unfortunately, native BDNF protein-based therapies have had little clinical success due to their suboptimal pharmacological properties. In the past 20 years, BDNF mimetic peptides have been designed with the purpose of activating certain cell pathways that mimic the functional activity of native BDNF, but the interaction of mimetic peptides with cells can be limited due to the conformational specificity required for receptor activation. We report here on the incorporation of a BDNF mimetic sequence into a supramolecular peptide amphiphile filamentous nanostructure capable of activating the BDNF receptor TrkB and downstream signaling in primary cortical neurons in vitro. Interestingly, we found that this BDNF mimetic peptide is only active when displayed on a peptide amphiphile supramolecular nanostructure. We confirmed that increased neuronal maturation is linked to TrkB signaling pathways by analyzing the phosphorylation of downstream signaling effectors and tracking electrical activity over time. Furthermore, three-dimensional gels containing the BDNF peptide amphiphile (PA) nanostructures encourage cell infiltration while increasing functional maturation. Our findings suggest that the BDNF mimetic PA nanostructure creates a highly bioactive matrix that could serve as a biomaterial therapy in injured regions of the CNS. This new strategy has the potential to induce endogenous cell infiltration and promote functional neuronal maturation through the presentation of the BDNF mimetic signal.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Sistema Nervioso Central/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor trkB/genética , Animales , Biomimética , Factor Neurotrófico Derivado del Encéfalo/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/química , Diferenciación Celular/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Humanos , Ratones , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/metabolismo , Péptidos/química , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacos
8.
Nat Commun ; 9(1): 2395, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921928

RESUMEN

Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.


Asunto(s)
Anisotropía , Hidrogeles/química , Músculo Esquelético/fisiología , Nanofibras/química , Polímeros/química , Algoritmos , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Humanos , Nanofibras/ultraestructura , Temperatura , Termodinámica
9.
PLoS One ; 12(12): e0190150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29284013

RESUMEN

The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.


Asunto(s)
Oído Interno/metabolismo , Péptidos/metabolismo , Nicho de Células Madre , Animales , Diferenciación Celular , Trasplante de Células , Células Cultivadas , Oído Interno/citología , Humanos , Ratas
10.
Stem Cells Transl Med ; 6(3): 923-936, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28186679

RESUMEN

The ability to generate spiral ganglion neurons (SGNs) from stem cells is a necessary prerequisite for development of cell-replacement therapies for sensorineural hearing loss. We present a protocol that directs human embryonic stem cells (hESCs) toward a purified population of otic neuronal progenitors (ONPs) and SGN-like cells. Between 82% and 95% of these cells express SGN molecular markers, they preferentially extend neurites to the cochlear nucleus rather than nonauditory nuclei, and they generate action potentials. The protocol follows an in vitro stepwise recapitulation of developmental events inherent to normal differentiation of hESCs into SGNs, resulting in efficient sequential generation of nonneuronal ectoderm, preplacodal ectoderm, early prosensory ONPs, late ONPs, and cells with cellular and molecular characteristics of human SGNs. We thus describe the sequential signaling pathways that generate the early and later lineage species in the human SGN lineage, thereby better describing key developmental processes. The results indicate that our protocol generates cells that closely replicate the phenotypic characteristics of human SGNs, advancing the process of guiding hESCs to states serving inner-ear cell-replacement therapies and possible next-generation hybrid auditory prostheses. © Stem Cells Translational Medicine 2017;6:923-936.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/citología , Células Receptoras Sensoriales/citología , Ganglio Espiral de la Cóclea/citología , Animales , Tronco Encefálico/citología , Línea Celular , Linaje de la Célula , Movimiento Celular , Supervivencia Celular , Técnicas de Cocultivo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Células-Madre Neurales/citología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...